STAR Meeting, Strasbourg 3- 4 April 2008

Mimosa 22 Steering & Readout

Mimosa 22 Proximity Board

OUTLINE

- ► Mimosa 22 overview (DAQ point of view)
- **▶** Configuration by JTAG slow control
- ► Steering & Readout protocol
- ► Mimosa 22 hardware (Proximity and auxiliary boards)
- **►** Testability features
- **▶ DAQ System example**
- **▶** Conclusion

Mimosa 22 overview (DAQ point of view)

Mimosa 22 (Main clock 100 MHz – TInteg = 92,16 us)

- ► Analog pixels
 - ▶ 8 columns x 576 lines = 4608 pixels (17 sub-matrices)
 - ► Columns <u>parallel</u> readout on <u>8 Outputs</u>
 - ▶ 2 Samples (Read & Calib) / pixel => 12,5 MHz data stream
- ▶ Digital pixels (pixel + discriminator)
 - ▶ 128 columns x 576 lines = 73728 pixels (17 sub-matrices)
 - ► Columns <u>serial</u> readout on <u>16 Outputs</u> (8 columns / output)
 - ▶ 1 bit / pixel => 50 MHz data stream
- **▶** Main testability features
 - ▶ 2 Markers lines can be added at the end of matrix (Total = 578 lines)
 - ► Analog signals emulated by two <u>fixed level</u>
 - ▶ <u>Discriminators</u> state replaced by a <u>fixed pattern</u>
 - ► Internal pulse generator to test / <u>characterize discriminators</u>
- **▶** Configuration
 - ► All <u>parameters</u> (operating modes, bias) <u>configurable by JTAG</u>

Configuration by JTAG slow control

JTAG software

- **►** Running under Windows
- ► PC // port HW interface
- ▶ Data rate ~ 100 kbit/s

Development done by K.Jaaskelainen

Mimosa 22 ... Many operating modes ...

- ▶ Default configuration suggested :
 - ► Add the two markers lines at end of matrix
 - ▶ Select analog and digital markers as test signals
 - ► Test1Pad = Test A = MK TEST A (Analog marker)
 - ► Test2Pad = Test_D = MK_TEST_D (Digital marker)

Steering & Readout protocol: Signals overview

Mimosa 22 Control

- **▶** Operating modes and bias configuration by JTAG
- **►** Two steering lines
 - ▶ Start

To synchronize all Mimosa 22 (Hopefully). No clock signal before Start.

▶ Speak

Mi22 provides data when Speak = 1. No synchronization signal if Speak = 0. Acts as a DAQ READY signal (set to 0 while DAQ is BUSY).

Mimosa 22 DAQ Synchronization

- ► Separate clock & sync signals for analog & digital outputs
 - ► Analog
 - ► CLK_A Clock for analog data
 - ► MK_CLK_A Synchronization on last line
 - **▶** Digital
 - ► CLK_D Clock for digital data
 - ► MK_CLK_D Synchronization on last line, last pixel
- ► Test markers Line configurable by JTAG
 - ► MK_TEST_A (Analog)/MK_TEST_D (Digital)

Steering and Readout protocol: Start and Speak phases

Steering and Readout protocol: Analog synchronization

Steering and Readout protocol: Digital synchronization

Steering and Readout protocol: Summary

Mimosa 22 Hardware: Proximity & auxiliary boards

Four boards

- **▶** Proximity board
 - ▶ Mimosa 22 is bonded on it
 - ► First level of buffers & amplifiers
- **▶** Digital auxiliary board
 - **▶** Proximity board power supply
 - **▶** Clock generator
 - **▶** Digital signals buffers
- **▶** JTAG interface board
 - ▶ PC // Port to LVDS translators
- ► Analog auxiliary boards
 - ► Analog signals amplifiers (SE / DIFF)
 - ► Two boards are required (4 channels / board)
 - **▶** Boards designed by W.Dulinski
 - **▶** Documentation by M.Goffe & M.Specht

Testability features: DAQ point of view

Testability features: Test point of view

Testability dedicated to characterization

- ▶ Possibility to disable noisy columns (Digital pixels)
- ► Internal pulse generator to test discriminators
 - **►** Emulate pixels signals
 - ► Read = VTest2 + VTest1 & Calib = VTest2
 - ► VTest2 = base line : 0 ... 2500 mV 10 mV step
 - ► VTest1 = signal : -30 ... +34 mV 0.25 mV step
 - **▶** Discriminators threshold
 - ► Threshold = VRef1 VRef2
 - ► VRef2 = base line : 0 ... 2500 mV 10 mV step
 - ▶ VRef1 = signal : -30 ... +34 mV 0.25 mV step
- **►** Example of discriminators characterization
 - ► Threshold set to 1 mV
 - ► Input scan from -4 mV to +8 mV
 - **▶** Results
 - ► Threshold 1,18 mV
 - ► Threshold dispersion 180 uV
 - ► Mean noise 300 uV

Testability features: Phase 1

Testability & Readout on Phase 1 (640 columns x 640 lines)

► Features of Mimosa 22

- ► Markers Discriminators test generator Digital pattern generator
- ▶ 8 columns / 640 can be read in analog mode (Nominal TInteg = 640 us) => Pixels characterization
- ► Slow readout links : 8 analog outputs @ 2 MHz & 16 digital outputs @ 40 MHz

► New features

- ▶ Readout of all columns in analog mode (80 x Nominal TInteg = 51,2 ms) => Pixels functional test
- ► Frame tag (0..9) to detect desynchronization between Mimosa 22 on a ladder
- ► Fast readout links : 4 digital outputs (160 MHz)

More information in Andrea's talk ...

DAQ System example

- ▶ IPHC Imager boards
 - ► 8 Analog outputs => 2 Boards
 - ▶ 16 Digital outputs => 1 Board + Digital extension
- **▶** On-line monitoring plots
 - ► Analog pixels : read signal
 - **▶** Digital pixels

Conclusion: Status & Next steps

- ► Mimosa 22 characterization
 - ► Tests are on the way at IPHC, done by M.Goffe & Will start on next weeks at IRFU
 - ► First results presented by A.Dorohkov Irradiation tests will also follow
- ▶ Mimosa 22 hardware & software available for STAR collaboration
 - ▶ One set of boards (Ready in next weeks) & JTAG software
 - ► More documentation ... as soon as possible ...
- ► Mimosa 22 beam-tests
 - **▶** Beginning of August at CERN
 - ► DAQ upgrade and integration for BT : May July
- ▶ Phase 1 Test & Characterization
 - ► Characterization with "low speed links": DAQ ~ Ready ⇔ Mimosa 22
 - ► Analog pixels on 8 links up to 50 MHz
 - ▶ Digital pixels on 16 // links up to 50 Mbit/s / link
 - ► Focus on Phase1 tests on PCB Few hope do probe tests this year at IPHC
 - ► Fast digital link will be tested with logic analyser and Phase 1 pattern generator